Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 25, No. 9, pp. 12791289, 1982

0017-9310/82/091279-11 $03.00/0
Pergamon Press Ltd.

KNOWTRAN: AN ARTIFICIAL INTELLIGENCE
SYSTEM FOR SOLVING HEAT TRANSFER
PROBLEMS

AJAaY SHARMA* and W. J. MinkKOwYCZ

University of Illinois at Chicago Circle, Department of Energy Engineering,
Chicago, IL 60680, U.S.A.

(Received 12 October 1981 and in revised form 30 November 1981)

Abstract—The detailed design specifications of an artificial intelligence system called KNOWTRAN are
developed in this work. The design philosophy behind this system calls for a general and flexible program for
acquiring, representing, storing and applying heat transfer knowledge. These ideas lead to the adoption of a
knowledge-based approach to artificial intelligence programming. Furthermore, ideas about knowledge
representation are developed to meet the requirements of a general heat transfer problem solver. This involves
a hierarchical knowledge base managed by a flexible knowledge acquisition system. Finally, spacial
representations are developed to accommodate objects and relationships in heat transfer problems.

NOMENCLATURE
BB, blackboard;
DLI, domain language interface ;
ES, explanation subsystem;
KAS, knowledge acquisition sub-
system;
KB, knowledge base;
KBS, knowledge-based system;
KNOWTRAN, KNOWIledge-based problem
solver for heat TRANsfer;
KR, knowledge representation ;
PPS, performance program sub-
system;
SM, system monitor ;
SPB, solution programs base.

INTRODUCTION

THIS PAPER contains a description of the goals, acti-
vities and the results of research on developing an
artificial intelligence problem solver for heat transfer
problems. The goal of this research is the design and
implementation of a knowledge-based system (KBS)
which will be expert in solving engineering problems
involving heat transfer. The advantages of automating
problem solving include lower cost as compared with
human experts, reliable solutions, availability of a
structured description of the solution technique used,
access to a large and up-to-date knowledge base and
ultimate use of the KBS as a research tool in exploring
new techniques.

Before discussing the present project in detail, let us
take a look at some of the previous work in application
of artificial intelligence to problem solving. The
pioneering work in this direction was done by Newell
and Simon [1, 2] when they introduced their program

*Presently at IBM Corp., GTD East Fishkill, Hopewell
Junction, NY 12533, U.S.A.

“Logic Theorist” in 1956. Since then, many workers in
artificial intelligence have worked on building com-
puter systems to solve problems. The approach first
taken by these researchers was to try to develop a
general, domain-independent problem solver [2]. Al-
though this work uncovered some basic techniques
and limitations of artificial intelligence, it did not result
in powerful, general-purpose problem solvers. One of
the reasons for this was the size of knowledge base that
is involved in solving practical problems. In other
words, expert-level problem solutions are based on a
large amount of contextual knowledge and experience
that a human worker has accumulated.

The second approach adopted by researchers was to
construct programs which limit their activity to a
specific domain, and use a large amount of domain-
specific knowledge to guide the problem solving
process effectively [3, 4]. However, most of these
programs have used ad hoc approaches for knowledge
representation, which are too rigid to accomodate a
variety of task domains. Nevertheless, these past efforts
have resulted in some programs with impressive per-
formance in, for example, internal medicine (MYCIN)
[5], molecular genetics experiment design (MOL-
GEN) [6], symbolic mathematics (MACSYMA) [7]
and mechanics problems in physics [8].

In the design of any knowledge-based system, the
first and one of the most difficult problems to be
tackled is that of knowledge representation [9-11]. In
order to first understand and then solve a problem, one
must be able to represent the objects, relationships and
the abstract concepts of the domain in the artificially
intelligent system. Without proper representation it
would be difficult to achieve a significant amount of
intelligence in the program, as the crux of “understand-
ing” a problem is in abstracting it to a representation
which is complete and amenable to manipulation and
transformation that leads to a solution. Therefore, the
initial thrust of the present research is directed towards

1279

HMT 25:9 - B

1280

the development of appropriate representations. In
addition, an effort is made to define the performance
characteristics of all the subsystems in the heat transfer
problem-solving system. While addressing the repre-
sentation and system design problems, full consider-
ation is given to the state of the art in the field of
knowledge-based systems.

DESIGN PHILOSOPHY

The overall goal of this research is the design and
implementation of an artificial intelligence system that
acts as an expert in heat transfer. In order to further
define this goal, consider the role that a human expert
plays. He learns, solves problems and provides explan-
ations on problem-solving techniques to others. In
addition, some experts conduct research on their
subjects to advance the frontiers of knowledge. The
ultimate artificial intelligence system must do all thata
human expert does. However, the state of the art does
not yet allow one to create an artificial system with the
breadth of knowledge and experience that humans
have. Therefore, some restrictions have to be imposed
on the desired performance.

Design goals
It was mentioned in the Introduction that develop-
ment of a program with general problem-solving
capability is not yet practical. The approach adopted
here constrains the domain of expertise of the system
to a specific area of engineering, which for the present
is heat transfer. This restriction, however, is flexible in
that the field of expertise only influences some of the
subsystems in the design. This point will be discussed
in detail later. As we are working on creating a heat
transfer expert, let us call it KNOWTRAN (from
KNOWIedge-based problem solver for heat TRANSs-
fer). Within its field - heat transfer-— KNOWTRAN
should be an equal to a human problem solver in that:
(1) given a problem for which its knowledge base is
sufficient, KNOWTRAN should solve the prob-
lem with only as much input information as is
required by a human expert
(2) it should include facilities for interactive learn-
ing for initial, construction and subsequent
expansion of its knowledge base;
it should be able to explain the strategies and
procedures that it adopts for solving the prob-
lem in order for people to have confidence in its
solutions, and be able to provide a complete
history of an unsuccessful solution attempt;
and,
interact with the user in the common language
of the field that an expert can communicate in
without any special training.

(3

~—

SN

Tools and techniques

Having outlined the design goals, an in-depth
analysis of what the goals entail is now presented. The
first and last of the requirements set above are both
fundamental and the most difficult to meet. In order

ATAY Starsa and W, J. MINKowyCr

for the system to be able to solve problems like people.
it must recognize that problem solutions depend upon
[12,13]:

(a) the OBJECTS in the problem and their
properties ;

{b) the interactions between objects, i.e. the RE-
LATIONSHIPS that exist among the various
components ;

(c) the CONTEXT of the problem, which de-
termines the accuracy needed and the assumptions and
approximations that can be made etc., and

(d} the known factors, and those that are desired,
which together represent the crux of the initial prob-
lem statement.

An intelligent system is required to satisfy many
other behavioral criteria in order to equal an expert
[12, 13]. First, before actually attempting to solve a
problem, the system must form plans of attack at
various levels. The idea of planning in problem solving
has been proposed by many researchers [14, 15].
Planning, which is also called “meta-level” inference by
some authors, results in the narrowing down of
possibilities to be considered for finding an actual
solution procedure at an early stage. Moreover, in a
system with a large knowledge base (KB), planning is
mandatory for practical reasons like computer speed
and memory limitations. It has also been shown [12]
that planning is what separates experts from novices.
In the context of KNOWTRAN, planning will involve
things like classification of OBJECTS. RELATIONS
and the problem environment. These classification
activities result in pruning of further search options
and, therefore, increase the problem solving efficiency.
Further discussion of planning is postponed to a later
section. Related to the idea of planning is the concept
of hierarchical organization. A powerful technique of
hierarchial object and relationship classification, repre-
sentation and problem solution has been developed
to support the KNOWTRAN system. These oper-
ational characteristics will also be described later.

Continuing with the discussion on expert-level
problem solving, the next aspect to be considered is
strategy. Psychology research seems to indicate [(2]
that experts deal with problems in a “forward reason-
ing” manner. That is, they start from the given facts and
reason their way through known procedures to final
solutions. Novices, on the other hand. start from the
required solution and, using a backward chain of
reasoning, tie it to the given quantities. KNOWTRAN
design philosophy follows the path taken by experts,
and forward search strategies are used as much as
possible. This not only simulates human experts, but is
the only strategy which, eventually, might lead to a
system capable of original solutions to problems. An
integral aspect of forward reasoning is using a know-
ledge base that is hierarchically organized and easily
accessible at various stages of problem solving. This
implies storage of knowledge about entire clusses of
problems, pointing to further detailed knowledge.

Complex problems are dealt with by first decompos-

KNOWTRAN

ing them into simpler subproblems. It is at this
decomposition stage that a lot of contextual know-
ledge comes to play. Some decompositions might
require approximations and assumptions before they
can be realized. The problem decomposition mech-
anisms might be required at any level of solution
activity. One might need to decompose a problem right
in the beginning and/or at later stages in finding a
solution. This corresponds to an expert having a
complete abstraction of both the current problem and
of the domain knowledge in his mind at all times. In
order to implement these ideas, a complex control
strategy for KNOWTRAN is needed. Therefore, a
good design for KNOWTRAN should include a
flexible control system, which not enly has a good
control strategy built-in, but is also modifiable by a
domain expert with no system reprogramming re-
quired. This design objective will be met by using meta-
level knowledge for controlling KNOWTRAN
operation.

To summarize, KNOWTRAN should start its
problem-solving activity by first planning at various
levels, operating on various entities (OBJECTS, RE-
LATIONS etc.) using meta-level knowledge. Then it
would proceed with detailed solution using a detailed
knowledge base. All knowledge about control, plan-
ning and solutions is contained in the KB which
should have a uniform knowledge representation
structure.

Representation design

The most important decision in the design of an
intelligent system is that about representation [11].
Because the structure of knowledge to a certain extent
depends on the field, representations used are domain-
dependent. Recently, some efforts have been made to
find representations and structures which are generally
applicable [11, 16], but these are still in preliminary
stages of development. Moreover, we have set a design
goal for representation which has more flexibility than
any other proposed. KNOWTRAN representation
scheme is such that all knowledge is uniformly, but
flexibly structured. This goal will be achieved by
including representations of representation, to any level
required. In other words, KNOWTRAN will in-
ternally maintain structures that describe other struc-
tures that describe others etc., to any depth necessary.
Thus KNOWTRAN will have knowledge about its
own innards, to an extent not previously attempted in
an intelligent system. This knowledge about itself
results in one major benefit — the system is completely
flexible as new structures can be defined by the user in
terms of those already available in an interactive
manner. This inclusion of new knowledge repre-
sentations will be carried out in a natural dialogue,
with intelligent help from KNOWTRAN derived from
its existing knowledge base.

SUBSYSTEM SPECIFICATIONS
The purpose of this section is to describe a func-

1281

tional architecture for the KNOWTRAN system that
satisfies the criteria set by the design philosophy. The
description is conceptual in that certain functional
subsystems may physically be integrated into one
software module while other subsystems might ac-
tually be distributed over many program entities.
However, the physical implementation need not be
identical to the conceptual as long as, functionally, the
system behaves in the manner described in this section.

A model for KNOWTRAN consists of eight major
components which are as follows:

(1) the user subsystem,

{(2) system monitor {SM}),

(3) the knowledge acquisition subsystem (KAS),

(4) a knowledge base (KB),

(5) the performance program subsystem (PPS),

(6) a system blackboard (BB),

(7) explanation subsystem (ES), and

(8) the solution programs base (SPB).
These components make up the minimum KNOW-
TRAN system. Figure 1 schematically illustrates the
organization of all these subsystems in KNOWTRAN.
In order to add certain capabilities, like expertise in
developing new solutions, the system will have to be
further expanded. The questions about expansion will
be answered in another section while here we proceed
with a detailed specification of the present subsystems.

User subsystem

This component consists of the KNOWTRAN user
and the domain language interface (DLI). KNOW-
TRAN will operate in two modes — the learning mode
and the use mode. In the learning mode, the system
interacts with an expert to build and expand its
knowledge base, while in the use mode KNOWTRAN
is used by people to solve problems. Problems are
input to the program in either mode in the natural
language of heat transfer. Similarly, other interactions
are also in natural language (technical English) and the
purpose of DLI is to translate between internal
KNOWTRAN representations and English.

The design of DLI depends upon the common user
language and the internal representations adopted.
Translation between these two is guided by grammati-
cal rules and by contextual knowledge [8]. There are
many other factors to be considered but the detailed
design of the DLI is postponed to the time when other
subsystems of KNOWTRAN are more well defined.
This delay is unavoidable because of the strong
interaction between DLI requirements and the rest of
the system. At this point we assume that a suitable DLI
will translate user problem statements, queries and
input knowledge, and KNOWTRAN solutions, ques-
tions and explanations. The final design of DLI will be
guided by the work of other researchers [8, 17, 18] in
natural language understanding and translation.

System monitor
The function of the KNOWTRAN system monitor
is to control the interactions between other sub-

1282

Asay StuarMa and W, I MINKOWY (7

USER SUBSYSTEM i
|
]
|
Solutions,Questions, Expilanations i
ol o, | |
E
EXPERT Problems,Queries, LANGUAGE :
Knowiedge Transfer INTERFACE i
(USER) (DL 1
i
USER LANGUAGE .
INTERACTIONS i
________________________________ b e - = —— =
SYSTEM
LANGUAGE
INTERACTIONS
nput KNOWLEGE |
1
KNOWLEDGE Krowiodas Aclguss;nzgl SYSTEM MONITOR (SM)
ACQUISITION | DIRECTIVES) INTERPRETER
SUBSYSTEM Vearification ";F;BE:E-J—1 o -]
! ——— e
(KAS) SOLVING ! fEXPLANATDONE 5 Az:‘g:ﬂ
DIRECTIVES | | DIRECTIVES | 1OR 3
Storage : . @3
Access Solution Trace % g
/,,_-—'\ Probiem Strategy Requests Explanations 5 |3
KNOWLEDGE Input | o Fallure 2|5
BASE (KB) Report
SChEm, ~SCHEMATA) PERFERMANCE EXPLANATION
_________ PROGRAM SUBSYSTEM SUBSYSTEM
SCHEMATA L (PPS) (ES)
T e - T ORAB! M AHGTRACTIA SOL
[Prosiew_aesTRAcTION] PROGRAMS
KNOWLEDGE Access |! PLANNING DECISIONS ! BASE
Abstray, [SoLuTion STRATEGY | (sPB)
He on, solution ! GENERATION :
Urlsr,cS ls"ategleﬁ h i
P DI
D TEGY
ETAILED STRA BLACKBOARD
KNOWLEDGE (BB)
Searcy, :so‘u“‘”‘a CURRENT PROBLEM
NLewrisyig | srate @Y N STATE _/
S - - Access
SOLUTION
“o__ NETWORK __~

Fii. 1. Functional architecture of the KNOWTRAN system.

systems. Its role is primarily to maintain a uniform
access and response protocol and to catch and process
errors and interrupts. The system monitor is thus
merely an interface between other routines. It has been
decided, following the overall design philosophy, that
all subsystems will interact with the system monitor in
a uniform manner. By introducing SM as an in-
tegration tool, the rest of the KNOWTRAN design is
made modular. Once more, the detailed design of the
SM is deferred to a later stage in this project.

Knowledge acquisition subsystem
The system monitor will call upon the knowledge

acquisition subsystem whenever KNOWTRAN is
operating in the learning mode. KAS may also be
invoked automatically when KNOWTRAN fails at
any problem-solving task. It is through KAS that
KNOWTRAN learns both new things and how to
correct its mistakes.

KAS is designed for interactive transfer of expertise.
It interacts with the heat transfer expert and transfers
the expertise to KNOWTRAN knowledge base. This
interactive transfer of knowledge will free the experts
from the time consuming task of hand-assembling the
KNOWTRAN knowledge base. An example of a KAS
is the TEIRESIAS system [19] which was written to

KNOWTRAN

automatically build and enhance the knowledge base
of an intelligent system. The central theme of the
TEIRESIAS program was the use of meta-level know-
ledge in assisting in construction and maintenance of a
knowledge base. This was achieved by having the
program “know what it knows”. Thus, TEIRESIAS
not only used its knowledge directly, but also was able
to examine it, abstract it, reason about it and direct its
application.

In writing the specifications for the KNOWTRAN
knowledge acquisition subsystem, we start by includ-
ing all capabilities of existing TEIRESIAS-like pro-
grams. Furthermore, we propose some important
additional capabilities. The first extension is to require
KAS to deal with multiple levels of knowledge repre-
sentation rather than the two (meta-level and object-
level) that TEIRESIAS had. Multiple levels are re-
quired because we want KNOWTRAN to be able to
handle different kinds of knowledge structures. Pre-
vious artificial intelligence systems have been based on
a single knowledge representation, for example pro-
duction rules [5, 20, 21] or frames [11, 22]. KNOW-
TRAN design philosophy is to accommodate flexible
knowledge representation in order to include as much
of heat transfer knowledge as possible. This will be
achieved by using schema (templates) for knowledge
representations which start by defining a few repre-
sentations in terms of system primitives. These initial
schemas will be used in defining the next level repre-
sentation (schema-schemata), and so on, to an arbit-
rary level of complexity. To understand this concept,
consider the following analogy from conventional
programming systems. In the FORTRAN language,
high-level datatypes like REAL numbers are defined in
terms of binary digits (bits) that are the primitives that
a computer works with. The REAL numbers are then
used to define COMPLEX datatype as a pair of REAL
numbers. Therefore, theoretically, one has a hierarchy
of datatypes defined in terms of primitive bits. Si-
milarly, KNOWTRAN will work with representations
that, at the bottom level, are all defined in terms of
certain system primitives, and their definitions are
known to the system itself in the form of the next higher
level meta-definitions. Further details of the repre-
sentation system adopted will be presented later.

Given the flexible representation philosophy, the
specifications of the KAS become more demanding
than those for previous programs. The KAS must
insulate the user from the details of maintaining the
complex hierarchical knowledge base while providing
access to it in a flexible manner. These characteristics
will be built-in in the KAS. Briefly, the KAS will be
guided in its knowledge acquisition role by the history
of previous solution attempts by KNOWTRAN. For
example, if KNOWTRAN ever provides an unsatisfac-
tory solution or fails to solve a problem, then the user
will be given the choice of switching to the knowledge
acquisition mode. Once that happens, KAS should
provide a trace of the solution attempt and query the
user about where erroneous decisions were made.

1283

Then, the expert will guide KAS in adding, deleting or
modifying appropriate aspects of the KNOWTRAN
knowledge base. These modifications will be made in
an interactive manner similar to that of TEIRESIAS
[19], except that the KNOWTRAN KAS will have
many levels of meta-knowledge to work with. The
details of the functioning of KAS will be explained in a
following section.

Knowledge base

Most of the characteristics of the knowledge base
have already been discussed in previous sections. Here
we will bring all these ideas together and complete the
specification of KNOWTRAN knowledge base. The
knowledge base is central to the functioning of the
entire KNOWTRAN system as all the intelligence or
logic it requires to operate is contained in the KB. In
other words, it will consist of all levels of meta-
knowledge (schemata, schema-schemata etc.) which
define the nature of knowledge contained, and the
knowledge itself. Knowledge is also arranged in a
hierarchy ranging from planning, abstraction and
decomposition heuristics to the detailed problem
solution strategies in heat transfer. Meta-level know-
ledge will be used by the KAS in initial construction
and subsequent expansion of the knowledge base. In
fact, meta-knowledge itself will be put in the KB by
starting with a small nucleus of KAS-related meta-
knowledge and then bootstrapping to a larger col-
lection. Thus, one will build a system which is entirely
KB-driven with very simple fixed code programs.

The knowledge base is thus merely a collection of
structures which represent knowledge in the
KNOWTRAN system. Therefore, the design specifi-
cations for knowledge representation also constitute
the requirements to be satisfied by the KB, and these
have already been outlined in preceding sections.

Performance program subsystem

Just as the KAS uses the meta-level knowledge to
acquire heat transfer expertise, the performance pro-
gram subsystem utilizes this knowledge to actually
solve problems. In a way PPS is the heart of KNOW-
TRAN as it is this subsystem which will be invoked by
the system monitor to work on a given problem. It will
perform this function by applying the knowledge in the
KB to the current situation while maintaining a record
of actions taken, and checking the results of these
actions to see if the solution(s) have been found. The
most important design consideration for the PPSis to
keep in mind that it must base all its decisions on what
is contained in the knowledge base. This includes
decisions regarding control, focus of attention, search
strategy and actual solution approach.

In most of the previous artificial inteiligence sys-
tems, some of the control information was embedded
in the performance program [10]. This made these
programs relatively inflexible in handling a variety of
problems. Similarly, problem solution strategies like
means—ends analysis [23, 24] or problem reduction

1284

were inherent in the entire structure of some of the
artificial intelligence programs. Other performance
programs included planning ideas in their implemen-
tation [25-27]. The design objective set for the
KNOWTRAN PPS is to strictly follow the doctrine of
keeping all knowledge in the knowledge base, and so
the PPS program itself will be relatively simple. It will
merely fetch a chunk of knowledge from the KB and
then take actions based on this knowledge. Thus, the
implementation of planning and problem solution
strategies will be in the contents of the knowledge base.

The blackboard

The KNOWTRAN blackboard is a conceptual
entity which is used by the performance program to
record all its activities while solving a problem. PPS
will record its understanding of the problem statement,
all subsequent knowledge application attempts, a trace
of states that a problem has gone through, and a list of
knowledge application failures on the blackboard. In
practice, the BB will consist of various data structures,
each tailored to the specific needs of storing one of
these aspects of PPS activity. For example, the current
problem state will be represented in a data-type chosen
for problem description — a record of intermediate
solution stages kept in the solution network (see Fig. 1)
— and the exclusion list will be made up of a record of
failures.

In addition to being a scratchpad for PPS operation,
the BB will be accessible to the explanation subsystem
for the purpose of providing feedback to the user as
explained in the next section.

Explanation subsystem

This component of KNOWTRAN will be an impor-
tant debugging and problem solving tool. The explan-
ation subsystem will be invoked whenever the user
asks KNOWTRAN for an explanation of a successful
solution, or when a solution attempt fails. In the first
case, the explanation request may be for verification of
the solution, and in the second case, the information
provided by the ES will be used in determining the
reason for failure.

Many previous artificial intelligence systems have
shown the value of a good explanation system [5, 28,
29] in increasing user confidence and as an important
system debugging and expansion aid. The KNOW-
TRAN ES will work by accessing the BB to extract
the relevant information and convey it to the user.
This information can then be used by the user and/or
the knowledge acquisition subsystem.

Solution programs base

Solution programs base will be a collection of
programs which generate detailed problem solutions
once the method of solution has been decided upon by
KNOWTRAN. Typically, these will be numerical and
symbolic mathematics packages that do the algebraic
and numerical calculations for the problem.

Asay Starma and W, J. MINKOWYC/

KNOWTRAN will use the SPB the same way as
human problem solvers use a scientific subroutine
library. The symbolic mathematics [8] programs will
also be used at various intermediate stages of develop-
ing a solution strategy in reducing and decomposing
the problem algebraically, and in other such oper-
ations. Numerical methods will be available to
KNOWTRAN as a part of the SPB containing
appropriate routines.

At the present state of the development of KNOW-
TRAN, the exact contents of the SPB are not important
because all decisions regarding the solution method
are based only on the knowledge base. KNOWTRAN
need only be aware that a certain solution procedure is
available and know the conditions of its applicability,
together with what the procedure’s output will be.
These characteristics of the SPB will actually be part of
the knowledge base and not of the SPB.

We have now sufficiently described the requirements
imposed upon the design of each KNOWTRAN
subsystem to be able to proceed with the actual design.
This process is begun with the description of the
KNOWTRAN knowledge representation in the next
section.

REPRESENTATION

The primary goal of the initial research on
KNOWTRAN is to develop the representations need-
ed, in addition to setting the design goals detailed in
the previous two sections. Before one can seriously
think about the design of any intelligent system, one
must decide about what representation is best suited to
the domain of interest [30]. Although in a theoretical
sense all representations are equivalent in that they are
imbedded in the basic programming structures of the
language being used, they are different in emphasis and
utility. The differences in the usefulness of different
representations are analogous to the differences be-
tween various programming languages, e.g.. that be-
tween a high-level language like SNOBOL and ma-
chine language. Also, practically speaking, an artificial
intelligence program will only be useful if its repre-
sentation scheme is designed to be suitable for the kind
of knowledge that characterizes the domain of
expertise.

KNOWTRAN's representations are designed with
the above factors in mind. Simply stated, the objective
is to have a representation scheme which satisfies the
following criteria:

(a) it should be as flexible and generally applicable
as possible;

(b) there should be as much uniformity in knowledge
representation for various types of knowledge as
possible, and

(c) all aspects of the knowledge base should be
accessible to the knowledge acquisition subsystem.

In the following sections we will describe a system for
knowledge representation which meets these criteria
better than any existing representation scheme.

KNOWTRAN

KNOWLEDGE _REPRESENTIONS_
LEVEL |

PRODUCTION
-RULES

EHEMA APPLY

_TO
PLANNING _
STAGEL | 7
If _btrue (logic_cond)
Then.apply {action)

FiG. 2. Example of hierarchical representation.

Hierarchical representation

The basic ideas behind hierarchical representation
were presented earlier. To recapitulate, hierarchical
representation involves the inclusion of knowledge
about how knowledge is represented in the KB itself.
This goal will be achieved by starting with certain
knowledge representation primitives and defining suc-
cessive levels of knowledge representation (KR) in
terms of lower levels. Figure 2 shows an example where
“production rules” are defined in terms of KNOW-
TRAN knowledge representation primitives [If True
(logic _cond), Then _apply (action)]. The data struc-
ture created is tagged to be a “schema” which implies
that it is not a piece of applicable knowledge, but a
description of a knowledge representation. In fact, this
particular schema is input to the KAS which can then
understand what a “production rule” is, and can then
acquire knowledge which fits the production rule
structure. A more complicated KR can now be defined
in terms of the production rule schema and/or KR

ORBJECT _NAME

PROPERTIES_LIST

RELATIONSHIP_LIST

CLASS_LIST

RELATION _NAME

OBJECT_LIST

CLASS_LIST

PROPERTIES_IST [—*
i

___[oBJECTI TOBJECTZ

1285

primitives. This is how the knowledge will be arranged
in a vertical hierarchy.

In addition to the vertical hierarchy, the KNOW-
TRAN KB will be organized in an execution hierarchy
which will control the application of knowledge. This
and other details of KR are the topic of discussion in
the following sections. Finally, it should be noted that
the SCHEMA frame in Fig. 2 is analogous to a
“program”. KNOWTRAN uses the information in the
second line of that figure only if the primitives in the
first line succeed.

Objects

Itis necessary to be able to express knowledge about
objects in a problem and their properties. The object
schema shown in Fig. 3 is an example of how objects
might be represented in KNOWTRAN. Recall that
with the flexible KR adopted, this schema shows only
an example of object representation, and other
schemata can be added in order to include objects
which do not fit this one. Both KAS and PPS will not
expect objects to be represented in any particular
manner but will rather be guided by the object
schemata.

In the example shown in Fig. 3, objects are repre-
sented by a data structure consisting of the object
name pointing to the lists of its properties, relation-
ships participated in, and a list of active classifications
at various levels in the classification hierarchy. The
properties list is initially constructed by the domain
language interface as it analyses the problem state-
ment. It is made up of property name (PNAME) plus
value pairs with the values of unknown properties set
to appropriate system primitives (“dependent vari-
able”, don’t care” etc.). During the solution attempt,
the properties list will be suitably modified by PPS.

PNAME|
VALUEI

PNAME 2
VALUE?2

RELNAME|[RELNAMEZ |
IRELQI RELQ2 x

OCHI

CLASSI CLASS2 |

PNAMEI
VALUE |

PNAME2 |
VALUE 2

|0BJQ! 08JQ2

RCH2

F1G. 3. Example object and relation representations.

1286

The second component of object representation is a
list of relationship names (RELNAME) of the re-
lationships which involve this object. These relation-
ships are the links between various objects and are
described in the next section. Finally. the third com-
ponent of the object representation is the classification
list which is initially empty (NILL). As the PPS
proceeds with the problem solution, it places the class
names (CLASS) to which the object is found to belong
at various levels of the object classification hierarchy
{OCH).

Relations

Figure 3 also shows a representation suitable for
expressing relationships which is similar to the
object representation. Each relationship has a prop-
erty list attached to it. As an example, consider a
composite-slab conduction probiem where the slab is
made up of two materials. The objects in this problem
will be the two different material slabs, with material
properties like thermal conductivities attached to the
OBJECT properties list. and boundary properties like
temperatures attached to the RELATION properties
fist,

In addition to the properties list, the relation
representation also has an object list and a classifi-
cation list. The object list consists of the names
(OBJECT) of the objects connected by this relation. In
addition to the names of objects, the object list
contains “qualifiers” (OBJQ} which qualify a re-
lationship, e.g. in the 1-dim. slab problem the objects
can be qualified as being “to the left of " and “to the
right of " this relation. The relations list attached to the
OBJECT representation also has similar qualifiers
(RELQ). Finally, the classification list in a relation will
be built up of classifications at various planning/
solution stages, by the PPS [relation classification
hierarchy (RCH}].

Control knowledye

KNOWTRAN performance program subsystem
will be designed to be knowledge-base driven. The
knowledge base will contain the information on PPS
operation as “control knowledge”. Initially, the con-
trol knowledge will be represented as meta-level
production rules. These production rules will be
defined as shown in Fig. 2.

Tt T h2

Kl k2

"OUTSIDE 2"
T0

"OUTSIDE 1"

Fi. 4. Example heat transfer probiem.

Asay Siarma and W, I MINRowy 7

Planning and strategy knowledge

In addition to control knowledge, which determines
the flow of control in KNOWTRAN PPS, the perfor-
mance program will use many levels of planning and
strategy knowledge. This knowledge is the actual
domain-dependent knowledge which imparts “in-
tuitive feel” of the subject to KNOWTRAN. The ideas
for representing meta-knowledge have been drawn
from previous work f{e.g. [15]) and most of this
knowledge will be represented as production rules and
frames. The order in which this hierarchy of knowledge
will be applied will be governed by PPS control
knowledge.

Detailed problem solving knowledge

This portion of the KNOWTRAN knowledge base
will be treated in the most flexible manner possible in
that the decision regarding knowledge representation
will be made on a case-by-case basis. KNOWTRAN
KAS wiil guide the expert user in deciding upon a
suitable representation for each chunk of detailed
problem solving knowledge.

This knowledge acquisition process will begin with
the KAS presenting the expert a “menu” of currently
available knowledge representations (production
rules, frames etc.) and asking if the knowledge can be
represented in any of these ways. If that is the case.
KAS will proceed to interactively assimilate the know-
ledge into known representations. Otherwise. the
expert will have to create a suitable new representation
using system primitives (see Fig. 2).

At this knowledge acquisition stage, the expert will
also be asked to place the knowledge chunk (KC)at an
appropriate level of the knowledge hierarchy. Once the
K C is marked with its hierarchy level, the system will
ensure that it 1s used at a suitable stage in problem
solution.

K AS knowledge buse

This portion of the KNOWTRAN KB will contain
the information needed by the KAS for its own
operation. It will use production rule representation
(Fig. 2) to guide the KAS in acquiring knowledge,
interacting with the user and in performing general
housekeeping functions, 1t has been shown [19] that a
KAS can be designed to operate based upon a
production rule type meta-knowledge base. KAS
knowledge will also guide it in ensuring that all new
knowledge input to KNOWTRAN is properly assimi-
lated in the system so that it is compatible with all
programs and is tagged for use at the right stage of
problem solution.

SYSTEM OPERATION
Having spelled out the basics of KNOWTRAN
system design and knowledge representation, we can
proceed with a description of how all these pieces will
be put together operationally. In this section an

KNOWTRAN 1287

OBJECT | RELATION OBJECT
"OUTSIDE " "RELA " “SLAB!"

'_RELATION OBJECT |
"RELA 2" "SLAB 2"

RELATION OBJECT
L "RELA 3" "OUTSIDE 2"

F1G. 5. Object—relationship network.

example heat transfer problem will be used to describe
system operation.

Consider the problem of heat conduction in a semi-
infinite composite slab (Fig. 4) with temperature T'1
given for the left boundary and the heat transfer
coefficient h2 and ambient temperature TO known for
the other boundary. Conductivities k1 and k2 are
given, and the interface temperature Ti and the heat
flux g are to be determined. This is a problem in
1-dim,, steady state heat conduction.

The problem is first input to KNOWTRAN
through the domain language interface of the user
subsystem. Eventually, the DLI will have the capabil-
ities of combined graphical and English input of
problems of this type. From the problem statement,
DLI constructs an object-relationship network con-
sisting of objects and relationships in the problem.
This network is shown in Fig. 5 and constitutes part of
the KNOWTRAN blackboard (Fig. 1). The network
consists of OBJECT and RELATION datatypes (re-

RELAI

presentations) linked to each other by bidirectional
pointers. In fact, the network shown in Fig. § is virtual
in that it is constructed by storing appropriate values
in OBJECT and RELATION datatypes rather than
an independent network. While DLI is parsing the
problem statement, it will create the OBJECTs OQUT-
SIDE!L, SLABI1, SLAB2 and OUTSIDE?2, and RE-
LATIONs RELA1, RELA2 and RELA3.

As an example of the kind of information put into
these structures by DLI, Fig. 6 shows the detailed
representations of RELAL, SLAB1 and RELA?2 at this
stage. The properties list of RELA1 has a single item —
the known temperature T1 on it — and the classifi-
cation list is initially empty. The notation
P(OUTSIDE!) is used to denote that the object list of
RELAL is made up of pointers to object names
and not the names themselves. Also, DLI attaches
qualifiers like “LEFT _OBJECT” to the elements in
the object list. These qualifiers will have a meaning to
the PPS, expressed in its knowledge base. SLAB1 and

L> Temperature 0
PROPERTIES _LIST TI

OBJECT_LIST

CLASS_LIST 0

P(QUTSIDE) P{SLAB 1)
LEFT _OBJECT

RIGHT_OBJECT

(NOTE: The —= O notation is used to
dencte the end of a list)

SLABI
Conductivit I Heat_flux
’;ROPERTIES-UST | P a7
)
P(RELA D) | P(RELA 2)
RELATIONSHIP_LIST)—*LEFT_RELATION RIGHT_RELATION

L CLASS_LIST \——»O

RELA2

PROPERTIES_LIST L—»‘ remperature Lo

[CLASS_LIST —0
[

T P(SLAB 1) P(SLAB 2)
OBJECT-LIST) FFT._OBJECT RIGHT _OBUECT °

F1G. 6. Objects and relations in the example problem.

1288

RELA2 representations are similarly constructed by
the DLI to store information that it extracted while
parsing the problem statement. Note that the property
Temperature of RELA2 is given the value *?” which
indicates an unknown that is to be determined during
problem solution. Properties that are not known and
not mentioned in the problem statements are not put
on any property list. The other objects and re-
lationships in the example problem (listed in Fig. 5)
will also be represented by DLI in a manner similar to
that shown in Fig. 6.

Once the DLI has parsed the problem statement. it
passes control to the system monitor. The SM will
ascertain the user’s intentions - either to solve the
problem or to instruct KNOWTRAN on solution
techniques — and then take appropriate actions. If the
user intends this problem to be an instructive example,
then an appropriate SM flag will be set and, in either
case, control passed to the PPS.

Upon initiating a problem solution attempt, the
PPS will start a LOG _LIST of all actions taken, a
FAILURE _LIST of unsuccessful trials and a
SUCCESS _LIST of applicable knowledge chunks
that caused an action leading toward a problem
solution. PPS control knowledge will guide all its
actions beginning with the application of planning
knowledge. In the case of the example being con-
sidered, the planning knowledge rules will look at the
object-relationship network and recognize the pattern
for classifying the problem as a one-dimensional,
steady state conduction. This classification will be
attached to all object and relationship classification
lists as the “planning level” classification,

Following the classification at planning level(s), the
detailed problem solution knowledge will be used to
solve the problem. In the case of this example, this may
guide the PPS to construct an equivalent resistive
electrical network and then invoke an electrical net-
work solution program from the SPB to determine T
and g. Thus a successful solution will be achieved and a
detailed report on the solution can be obtained
through an inquiry by the user. Such user inquiries will
be routed to the explanation subsystem which will
extract and translate the information contained in the
blackboard as the object and relationship repre-
sentations, the LOG _LIST. FAILURE _LIST and
the SUCCESS _LIST.

If the problem was initially marked as an instructive
problem, the difference in KNOWTRAN behavior will
be that at each solution stage it will interact with the
user At the beginning of an interaction, KNOW-
TRAN PPS will suspend operation and return control
to SM which in turn will invoke the ES to provide an
explanation of the latest actions taken. PPS will know
that it has to proceed one step at a time because it will
be passed a set “interactive” flag by the SM. This flag
will also be passed to the ES so that it provides
explanation of only the last step. Once the explanation
is given, SM will invoke the KAS which will help the
user interactively analyse the last action and suitably

Asay Starma and W. 1. MIngOowy 7

add to or modify the knowledge base to correct the
mistakes, if any. made during the solution attempt. The
manner in which KAS will operate will be a generali-
zation of how TEIRESIAS [19] works.

If KNOWTRAN is given a problem that it cannot
solve, it will go into a mode of operation similar to that
that it adopts for instructive problems. PPS will
suspend operation at the point that it cannot proceed
any further from and returns control to SM with “can’t
proceed” flag set. This will again invoke ES and KAS
to explain and overcome the difficulty encountered.

CONCLUDING REMARKS

In this paper we have laid out the detailed design
specifications for KNOWTRAN — an artificial in-
telligence system for solving heat transfer problems.
We have also developed the representation scheme for
objects, relationships and heuristic knowledge for
various purposes.

Further work on KNOWTRAN should begin with
the coding of a nucleus mini-KNOWTRAN consisting
of the SM, KAS, PPS and ES subsystems. Once this part
is ready and debugged using either a dummy or
skeletal SPB and direct input to SM, work can begin
on the DLI. The domain language interface itself will
be a major artificial intelligence project in natural
language and graphical input processing. However, a
good DLI will be essential from the usability point of
view.

Acknowledgement—This work was funded by the National
Science Foundation under grant ENG-7810318 and is grate-
fully acknowledged. The authors also acknowledge the
assistance of Mr V. D. Doshi in various aspects of this project.

Any opinions, findings, and conglusions or recommen-
dations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

1. A. Newell and H. A. Simon, The logic theory machine: a
complex information processing system, Inst. Radio
Engrs Trans. Information Theory 1T-2(3), 61-79 (1956).

2. A. Newell, J. C. Shaw and H. A. Simon, Report on a
general problem-solving program, in Proc. Int. Conf.
Information Processing, Paris, France, pp. 256-264 (June
1959).

3. B.G. Buchanan, G. L. Sutherland and E. A. Feigenbaum,
Heuristic DENDRAL : a program for generating explor-
atory hypotheses in organic chemistry, in Machine
Intelligence, (edited by B. Meltzer and D. Michie} Vol. 4,
pp. 121-157. American Elsevier, New York (1969).

4. N. J. Nilsson, Artificial intelligence, Proc. Int. Fed.
Information Processing Congress, Stockholm, Sweden
{August 1974).

5. E. H. Shortliffe, M Y CIN : Computer-based Consultations
in Medical Therapeutics. American Elsevier, New York
(1976},

6. M. Stefik, Planning with constraints. Ph.D. thesis, Stan-
ford University {1980},

7. R. Bogen et al., MACSYMA Reference Manual. Lab. of
Computer Sci., Mass. Inst. Technol,, Mass. (1978).

8 G. 8. Novak, Jr, Computer understanding of physics
problems stated in natural language. Ph.D. thesis,
University of Texas at Austin (1976).

10.

11,

12.

13

14.

15.

17.

18.

KNOWTRAN

. M. J. Stefik, An examination of a frame-structured

representation system, Proc. Fifth Int. Joint Conf. Arti-
ficial Intelligence, Cambridge, Mass (August 1977).

M. J. Stefik and N. Martin, A review of knowledge based
problems solving as a basis for genetics experiment
designing system, Report No. STAN-CS-77-596, Com-
puter Sci. Dept., Stanford University, Calif. (1977).

R. Greiner and D. B. Lenat, A representation language
language, Proc. Am. Assoc. Artificial Intelligence First
Nat. Conf., Stanford, Calif. (August 1980).

G. S. Novak, Jr. and A. A. Araya, Research on expert
problem solving as a basis for genetics experiment
Intelligence First Nat. Conf., Stanford, Calif. (August
1980).

Y. Larkin, J. McDermott, D. P, Simon and H. A. Simon,
Expert and novice performance in solving physics prob-
lems, Science, N.Y. 208, 1335-1341 (1980).

M. Minsky, Steps towards artificial intelligence, Proc.
Inst. Radio Engrs 4(1) (1961).

A. Bundy, L. Byrd, G. Luger, C. Mellish and M. Palmer,
Solving mechanics problems using meta-level inference,
Proc. Sixth Int. Joint Conf. Artificial Intelligence, Tokyo,
Japan (1979).

. R. Balzer, L. Erman, P. London and C. Williams,

HEARSAY-IIl: a domain-independent framework for
expert systems, Proc. Am. Assoc. Artificial Intelligence
First Nat. Conf., Stanford, Calif. {August 1980}).

G. S. Novak, Jr., Representations of knowledge in a
program for solving physics problems, Proc. Am. Assoc.
Artificial Intelligence First Nat. Conf., Stanford, Calif.
(August 1980).

W. A. Woods, Transition network grammars for natural
language analysis, Comm. ACM 13(10), 591-606 (1970).

19.

20.

21

22,

23.

24,

25.

26.

27.

28.
29.
30.

1289

R. Davis, Interactive transfer of expertise : acquisition of
new inference rules, Artificial Intelligence 12, 121157
(1979).

R. Davis and J. King, An overview of production systems,
Report No. STAN-CS-75-524, Computer Sci. Dept.,
Stanford University, Calif. (1975).

J. S. Aikins, Representation of control knowledge in
expert systems, Proc. Am. Assoc. Artificial Intelligence
First Nat. Conf., Stanford, Calif. (August 1980).

D, E. Smith and J. E. Clayton, A frame-based production
system architecture, Proc. Am. Assoc. Artificial Intelli-
gence First Nat. Conf., Stanford, Calif. (August 1980).
G. W. Ernst and A. Newell, GPS: A Case Study in
Generality and Problem Solving. Academic Press, New
York {1969).

R. E. Fikes and N. J. Nilsson, STRIPS: a new approach
to the application of theorem proving to problem solving,
Artificial Intelligence 1, 27-120 {1970).

P. H. Winston, Learning structural descriptions from
examples, MAC TR-56, Mass. Inst, Technol. (1970).

G. J. Sussman and D. V. McDermott, Why CONNIVing
is better than PLANNing, Mass. Inst. Technol., Techni-
cal Report MIT 255A, Cambridge, Mass. (1972).

E. D. Sacerdoti, Planning in a hierarchy of abstraction
spaces, Proc. Third Int. Joint Conf. Artificial Intelligence,
Stanford, Calif. (1973).

E. D. Sacerdoti, A structure for plans as behavior, Ph.D.
thesis, Stanford University (1975).

B. G. Deutch, Establishing context in task-oriented dia-
logs, SRI Int. Tech. Note 114, Stanford, Calif. (1975).
P. H. Winston, Artificial Intelligence. Addison-Wesley,
Reading, Mass (1977).

KNOWTRAN: UN SYSTEME D'INTELLIGENCE ARTIFICIELLE POUR RESOUDRE DES
PROBLEMES DE TRANSFERT THERMIQUE

Résumé—On développe ici les spécifications d’un systéme d'intelligence artificielle appelé KNOWTRAN. La
philosophie 4 1a base de ce systéme demande un programme d’acquisition général et flexible, représentant,
condensant et appliquant toute la connaissance des transferts thermiques. Ces idées conduisent i 'adoption
de la programmation de lintelligence artificielle basée sur la connaissance. De plus des idées sur la
représentation des connaissances sont développées pour rassembler les besoins de résolution d’un probléme
genéral de transfert de chaleur. Ceci implique une base hiérarchisée de savoir pilotée par un systéme fiexible
d’acquisition de données. Finalement, les représentations spéciales sont développées pour approprier les
objets et les formules dans les problémes de transfert thermique.

KNOWTRAN: EIN PROGRAMMSYSTEM MIT KUNSTLICHER INTELLIGENZ ZUR
LOSUNG VON WARMEUBERTRAGUNGSPROBLEMEN

Zusammenfassung—In dieser Arbeit werden ausfiihrliche Entwurfskriterien fiir ein Programmsystem mit
kiinstlicher Intelligenz, genannt KNOWTRAN, entwickelt. Die Entwurfsphilosophie des Systems erfordert
ein allgemeines flexibles Programm zur Aufnahme, Darstellung, Speicherung und Anwendung von
Wirmetibertragungswissen. Diese Ideen filhren zu einem auf der Kenntnis von Zusammenhingen
basierenden Ansatz der Programmierung kiinstlicher Intelligenz. Weiterhin werden Vorstellungen zur
Darstellung von Wissen entwickelt, um den Anforderungen eines allgemeinen L&sungsprogramms fiir
Wirmeiibertragungsprobleme (General Problem Solver) zu entsprechen. Dies fiihrt zu einer hierarchischen
Wissenbasis, die von einem flexiblen System zur Aufnahme von Wissen verwaltet wird. SchlieBlich werden
besondere Darstellungsformen fiir die Erfassung von Objekten und Bezichungen in Wirmeiibertragungs-
problemen entwickelt.

HOYTPAH: HCKYCCTBEHHAS UHTEJUIEKTYAJIbBHASS CUCTEMA [/ PELIEHUSA
3AJAY MO TEMJIONEPEHOCY

AnnoTaHf — JaHO noapoGHOE ONHCAHMEC WCKYCCTBEHHOW HHTEISKTYalbHOM CHCTEMbl, HaszBaHHOMH
Hoyrpau. Kounermuus tako#t cucremnr Tpebyer yumsepcasipnolt rubkoit mporpammsel cbopa. mpen-
CTABJCHHS, XpaHEHHA ¥ HCIOB30BAHHA AAHHBIX N0 Tennonepenocy. Mcnonb3oBan MeToa 6a3bl AaHHBIX
IUIR IPOTrPaMMHUPOBAHUS HCKYCCTBEHHOrO uHTesiekta. Kpome Toro, paipabGoran cnocob npeacrasnie-
HUS JAaHHBIX, KOTOPbIH OTsevaeT TpeDOBaHHAM MOUb30OBATENN. pewailoumero obliMe 3ajadyy Temno-
nepeHoca. OH OCHOBaH Ha HepapxHueckoil Dase NaHHbIX, ynpaBiseMoH rHOKOH CHCTEMOMN HAKOMJIEHHS
uHdopmaurn. Hakouell, paspaboTaHbl criocobbl npeacTaBieHNs JaHHbIX, COOTBETCTBYIOMME 00BEKTAM
H COOTHOLUEHMAM, BCTPEYAIOIHXCS B 3a/la4aX TEMJIONepeHoca.

